DEZENTRALE
VERSIONSYERWALTUNG
Hi|

GIT: THEMEN

e Warum Versionierung?

e Geschichte der Versionsverwaltung (allgemein)

e Geschichte von Git (im besonderen)

o Ubersicht tiber Versionierungsstrategien

e Git auf der Console (Kommandozeile)

e Git mit SourceTree (als Beispiel fur eine
graphische Oberflache)

WARUM VERSIONIERUNG?

WARUM VERSIONIERUNG?

e Datensicherung

WARUM VERSIONIERUNG?

e Datensicherung
e Alterer Zustand

WARUM VERSIONIERUNG?

e Datensicherung
e Alterer Zustand
e Parallele-Arbeit an mehreren Versionen

WARUM VERSIONIERUNG?

e Datensicherung
e Alterer Zustand
e Parallele-Arbeit an mehreren Versionen
e Parallele-Arbeit mit mehreren Personen

GESCHICHTE DER VERSIONIERUNG

GESCHICHTE DER VERSIONIERUNG

e Zeitstempel-Ordner

GESCHICHTE DER VERSIONIERUNG

e Zeitstempel-Ordner
e Dateiversionierung

GESCHICHTE DER VERSIONIERUNG

e Zeitstempel-Ordner
e Datelversionierung
e Zentral

GESCHICHTE DER VERSIONIERUNG

e Zeitstempel-Ordner
e Datelversionierung
e Zentral

e Verteilt

GESCHICHTE VON GIT

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert
e Erste Version in wenigen Tagen

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert

e Erste Version in wenigen Tagen

e Zur Verwaltung von Linux Kernel (sehr verteilte
Entwicklung)

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert

e Erste Version in wenigen Tagen

e Zur Verwaltung von Linux Kernel (sehr verteilte
Entwicklung)

e Sehr hohe Effizienz

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert

e Erste Version in wenigen Tagen

e Zur Verwaltung von Linux Kernel (sehr verteilte
Entwicklung)

e Sehr hohe Effizienz

e Sehr hohe Sicherheit

GESCHICHTE VON GIT

e 2005 von Linus Torwalds initialisiert

e Erste Version in wenigen Tagen

e Zur Verwaltung von Linux Kernel (sehr verteilte
Entwicklung)

e Sehr hohe Effizienz

e Sehr hohe Sicherheit
e Wegwerf-Zweige

VERSIONSSTRATEGIEN
LINEARE ENTWICKLUNG

) e e
[main_

EIN BRANCH - PRO

e Sehr einfache Benutzung

e Kein Merge zwischen unterschiedlichen Zweigen
notwendig

e Sehr gut fur den Einstiegin die
Versionsverwaltung geeignet

e Sehr gut fir Dokument-Versionierung (Blicher,
Artikel, Manuskripte usw.)

EIN BRANCH - CONTRA

e Schwer zu handhaben, wenn mehr als nur ein
Entwickler beteilig ist, da wahrend des Release-
Tests keine Weiterentwicklung fur nachste
Version moglich ist.

e Hotfixes einer Version sind sehr schwer zu
realisieren, da eventuell bereits unvollstandige
Features fur neue Version da sind.

MAIN - DEVELOP
STABLILER UND ENTWICKLUNGSZWEIG

MAIN - DEVLOP - PRO

e Bietet besseren Uberblick iiber ausgelieferte /
veroffentlichte Projektstande und belasst die
Flexibilitat bei der taglichen Arbeit.

e Schneller Zugriff auf benannte Stande, da diese
nur im Master-Zweig vertreten sind (ohne
Entwicklungsbalast).

MAIN - DEVELOP - CONTRA

e Schwer zu handhaben, wenn mehr als nur ein
Entwickler beteilig ist, da wahrend des Release-
Tests keine Weiterentwicklung fur nachste
Version moglich ist.

e Hotfixes einer Version sind sehr schwer zu
realisieren, da eventuell bereits unvollstandige
Features fur neue Version da sind.

GIT-FLOW
MAIN, DEVELOP, FEATURE, RELEASE, HOTFIX

GIT FLOW - PRO

GIT FLOW - CONTRA

WEITERE STRATEGIEN

WEITERE STRATEGIEN

e Forking

WEITERE STRATEGIEN

e Forking
e Pull Request

WEITERE STRATEGIEN

e Forking
e Pull Request
e GitHub Flow

WORKSHOP

